
Journal of Statistical Physics, Vol. 53, Nos. 1/2, 1988 

Transition in the Floquet Rates of a Driven 
Stochastic System 

L. E. Re iehl  t 

Received April 18, 1988 

Floquet theory is used to solve the Smoluchowski equation for a time-periodic 
system whose underlying dynamics exhibits a transition to deterministic chaos. 
For the stochastic version of this system, an abrupt transition occurs in the 
Floquet decay rates as parameters of the system are varied, leading to a much 
more rapid decay to the stationary state. 
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1. I N T R O D U C T I O N  

It is a great pleasure to contribute to this volume honoring Nico van 
Kampen, who has probably done more than anyone to bring clarity to the 
field of stochastic physics. In this paper, I consider a subject which has 
been a recurrent theme in his work, namely the response of a nonlinear 
system to a dynamic external field. This problem has become especially 
interesting because we now know that a nonlinear system coupled to a 
dynamic field will generally become chaotic as the parameters of the system 
are varied. A problem that has been little studied but is of growing interest 
is the behavior of a stochastic system whose underlying dynamics 
undergoes a transition to chaos. In this paper I consider such a system. 

The problem I consider is that of a Brownian particle of mass m and 
radius R confined to an infinitely deep square-well potential with potential 
energy V(x) = 0 for 0 < x < L and V(x) = oe otherwise. The square well is 
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filled with a fluid with shear viscosity r/ and the particle is driven by a 
monochromatic external force f ( t )  = e sin(2rcft), where e is the amplitude 
of the force and f is its frequency. The Langevin equation for the particle 
inside the well is 

dv/dt = - f ly  + ~ sin(2zft) - F(t) (1.1) 

where /~ is the Stokes friction, /3 = 6rcRtl/m, and F(t) is a delta-correlated 
white noise due to the many degrees of freedom of the fluid. [Note that 
(F(t)  F ( t ' ) )=  (kB T/ /3)6( t -  t'), where kB is Boltzmann's constant and T is 
the temperature of the fluid. Hydrodynamic memory is neglected.] If no 
fluid is present, the classical mechanical version of this system (1) undergoes 
a transition to deterministic chaos in certain regions of the phase space as 
parameters of the external field are varied. 

In this paper, I study the behavior of this stochastic system in the 
approximation where the friction is very strong so that the velocity relaxes 
to equilibrium on a time scale short compared to the period of the external 
field. The behavior of the system is then described by the Smoluchowski 
equation. <2'3) In Section2, I write the Smoloukowski equation for the 
driven system. In Section 3, I use Floquet theory to determine the time 
evolution of the system, and in Section 4, I obtain the Floquet decay rates 
of the system. 

2. D R I V E N  P A R T I C L E  IN A N  I N F I N I T E  S Q U A R E  W E L L  

Let us first consider the Smoluchowski equation for a particle confined 
to an infinitely deep square-well potential in the presence of white noise. 
The Smoluchowski equation for the particle in the interval 0 < x < L is 

8P(x, t) 82p(x, t) 
r  D c~x--------T~ (2.1) 

where P(x, t) is the probability density of finding the particle at point x at 
time t, the diffusion coefficient D = kB T/m~3, and the boundary conditions 
are 

8P = 0 
~ X  x = O,L 

to ensure that no probability flows through the walls. The solution to 
Eq. (2.1) takes the form 

P(x, t) = ~, cne-~~ q~,(x) (2.2) 
n = O  
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with the states ~bo(X ) = 1/L and ~b.(x) = (x/2/L) cos(mrx/L) (for n r 0) for 
probability normalized to 1 on the interval 0 < x < L. The eigenvalues are 
2n = n2rc2D/L2. The coefficients c. are determined by the initial conditions 
and are defined by 

fo '~ 0 . (x) . ,  0) c n = dx ~ r~x, (2.3) 

witl) Co = 1. 
Let us now drive the particle with a monochromatic external field. The 

Smoluchowski equation for the driven system takes the form 

e (2.4) OP(x,ot t ) = f l  sin(2~ft)OP(x,~?x t) + D O2p(X,ox 2 t) 

with the same boundary conditions as for Eq. (2.1). If we assume a solution 
of the form 

P(x, t)= ~ cm(t)~m(X) (2.5) 
m = O  

tlaen we find that the coefficients Cm(t) obey the equation 

OCm(t ) m2g2D 2c 
~ -- L ~  Cm(t ) - - - ~  sin(21rft) am, n G(t) (2.6) 

(rig-m) 

where n is chosen so that (n + m) is odd and 

a m n = ( n +  n ) 
' n - -m  n + m  

(2.7) 

It is convenient to write Eqs. (2.4) and (2.6) in dimensionless form. Let us 
introduce angle 0 = ~x/L, time ~ = rc2Dt/L 2, frequency fo = L2f/rdD, and 
coupling constant q = 2eL/flrcZD. Then Eq. (2.4) can be written 

OP(O, z) z~ ~?P 632P 
& = ~ q sin(2r~fo ~) ~--~ q 00 2 (2.8) 

and Eq. (2.6) becomes 

~?c,,(z) = _m2cm(r) _ q sin(2~for) ~ a,, n cn(v) (2.9) c~" 
n = l  

(n + m) odd 
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Equation (2.9) gives the evolution of the system in terms of a set of first- 
order differential equations with time-periodic coefficients, so we can use 
Floquet theory to determine their future evolution. 

3. F L O Q U E T  T H E O R Y  

There has been considerable work using Floquet theory to describe 
the time evolution of quantum systems with time-periodic Hamiltonians. (4) 
In this section I use Floquet theory to study the evolution of a Fokker-  
Planck equation (Smoluchowski equation) with time-periodic coefficients. 
Let us write Eq. (2.9) in the abstract form 

c3-~ Ic(z)) = ff/(z)jc(z))  (3.1) 

where W(r) = W(r + To), To = I/Jo, (nlc('c)) =- c,(r), and matrix elements 
are given by 

(ml ff~(r) in) = - - f l 2 ( ~ m , n  - -  q sin(2rtfo'r)am,, (3.2) 

Let us assume that Eq. (3.1) has Floquet solutions of the form 

Ic( r ) ) -=e  ~ IZ~(r)) (3.3) 

where I )~(z ) )=  IZ=(r+ To)), and A~ are the Floquet decay rates of the 
system. It is easy to show that 

"r IXs(z)> = As IXs(r)> (3.4) 

where 

~ ( r )  = ~ ( r )  - 0/e~ (3.s) 

These states IZ~(r)) are right eigenvectors of the operator ~/~(z) with eigen- 
values As. The operator ~/~(r) is not self-adjoint. Thus the left and right 
eigenvectors will not be the same. Let us introduce left eigenvectors (Os(r)[ 
of the operator ~ ( r )  

(~s(z)l  ~/~(r)= (~0~(r)l As (3.6) 

It is straightforward to show that (~k s(r) L Zs(~) ) = 0 if A s r A ~. We shall 
always normalize these states so that (Os(r) lX~(r))  = 6s, a. Furthermore, 
completeness requires that 

Z Iz~(r))(~,s(~)l = 1 
s 

We shall assume that the eigenvectors of ~/~(z) form a complete set. 
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Let us now expand Ic(r)> in terms of eigenstates I)G(~)>. Thus we 
write 

Ic(~)> = ~ A~e A~ ])G(z) > (3.7) 

The coefficients Am are determined in terms of initial conditions Ic(0)>, 

A~ = <~(0) ]c (0)>  

Thus 

Ic(r) > = ~ e A:" [)G(r) > < ~ ( 0 )  Ic(0) > (3.8) 

ff we use the periodicity of [)G(r)), we find that after one period, 7o of the 
external field 

]c(To) > = ~  e A=v~ ]Z:(0)><0~(0)I c(0)> 
c~ 

or, in terms of states c.(T), we can write 

(3.9) 

c . (ro)  = Y~ U.,,,(To) c,.(O) (3.10) 
m 

where 

U,,,(To) = ~ ea~176 ) <O~(O)rm ) (3.11) 
:x 

The matrix U~m(To) can be constructed from the solution to Eq. (2.8) after 
one period of the external field. From its eigenvalues, we can find A~ and 
from its left and right eigenvectors we obtain <nlz~(0)) and <0=(0)lm). 

4. NUMERICAL DETERMINATION OF FLOQUET RATES 

The Floquet decay rates will be a function only of the dimensionless 
vz, riables q and fo and are complex numbers. I have computed them for 
several values of fo and a range of q. For all values of q and fo consided 
one always finds one Floquet rate (which is designated Ao) equal to zero. 
Thus, this system does have a stationary state. Furthermore, for q.~ 27cfo 
the lowest Floquet rates behave as A~ ~ ~2 + i0. However, at q ~ 27cfo there 
is an abrupt transition in the Floquet rates. The lowest nonzero rate goes 
from A I = - 1  + i 0  to A I , , ~ - F + i O ,  where F=F( fo ,  q). (My numerical 
work did not have sufficient accuracy to make it possible to obtain a good 

822/53/ '1-2-4 
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Fig. 1. A plot of R L ( 1 ) =  Re A a versus q for fo = 0.1 and case m2l .  

estimate for F.) Thus, there is an abrupt increase in the rate of decay of the 
system to its stationary state. These results are shown in Figs. 1-4. To 
obtain these figures, I have integrated Eqs. (2.6) for systems of ,two different 
sizes. In one case I kept only the first 21 equations (0 ~< n ~< 20), yielding a 
matrix Un, m(To) with 21 x 21 elements. In the other case I kept the first 61 
equations (0 ~< n ~< 60) yielding a matrix Un, m(To) with 61 x 61 elements. I 
denote these two cases m21 and m61, respectively. 
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Fig. 2. A plot of RL(1 ) = Re A ~ versus q fo = 1.0 for cases ( [ ] )  m21 and ( m ) m61, 
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In Fig. 1, I plot the real part of the lowest Floquet rate A 1 as a 
fimction of q for frequency fo = 0.1 and case m21. A transition in the lowest 
decay rate occurs at qc ~ 2n(0.1). The real part of A 1 drops from - 1 . 0  to 
-- 1.6 to - 1.7 and levels out there. In Fig. 2, I plot Re A 1 as a function of q 
for frequency fo = 1.0 for cases m21 and m6l. The transition now occurs at 
qc ~ 2=(1.0). For  q < qc and at the transition point itself, the eigenvalue A1 
is insensitive to the size of the matrix used. However, for q > qc, its value 
appears to be limited by the size of the matrix. In Fig. 3, I plot Re A I 
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A plot of RL(1) = Re A 1 versus q for )Co = 100 for case m61. 
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versus q for frequency fo --- 10 for cases m21 and m61. Again the eigenvalue 
is relatively insensitive to the size of the matrix U,m(To) for q~< 2rcf0, but 
for q > 2~f0 it drops to a value which appears to be determined by the size 
of the matrix. Finally, in Fig. 4 I plot Re A 1 for frequency f0 = 100 and case 
m61. Again a transition occurs at q ~ 2~fo. 

Since we are so far from the conservative dynamic regime, it is not 
clear whether or one this transition is directly related to the underlying 
transition to chaos. But the possiblity if a connection is intriguing. I hope 
to say more about this is a subsequent paper. 
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